Math 564: Advance Analysis 1
Lecture 2
Examples (continued). O In any metric (more generals, topological) space, open sets form an algebra.

- Is any set X, the finite and co-finite ($=$ complement is finite) subsets fo cm an algebra, while the countable and co-conatable subsets form a σ-algebra.

Generation of algebras and σ-algebras.
Observation. Arbitrary intersections of algebras (resp, σ-algebras) is an algebra (resp. σ-alyebica). More precisely, for a set x, if $A_{i} \subseteq P(x)$ is an algebra (resp. σ-algebra) for each $i \in I$, then $\bigcap_{i \in I} A_{i}$ is also an algebra (resp. $\sigma \cdot a($ gehra).
(Here, I is an inkles set, which may be unctbl.)
Thus, for a given ullaction $\varepsilon \leq P(x)$, wa may define the

- alyehra generated by $C:\langle\varphi\rangle:=\bigcap_{\varphi \leq f \leq P(x)} A$.
Aalyebra
- σ-algehra generated $\} \quad e: \quad<C_{>_{\sigma}}:=\bigcap_{\tau \subseteq \zeta \subseteq P(x)} \zeta$.
S v-algelica

These are top -down definitions, using which mould be hard to woupate
even $\langle e\rangle$. We now give hotton-up/costractive equivalents.
Proportion. Le x be a set al $e \subseteq P(x)$.
(a)
$\langle\varphi\rangle=\bigcup_{n \in \mathbb{N}} e_{n}$, where $\varphi_{0}:=e$ and
$\zeta_{n+1}:=\left\{\right.$ finite unions and complements of sits from $\left.\tau_{n}\right\}$.
(b) $\langle e\rangle_{\sigma}=\bigcup_{\alpha \in \omega_{1}:=\text { the first undbl cardinal }} e_{\alpha,}$ hare $\tau_{0}:=e$ and fer $\alpha>0$, $\zeta_{\alpha}:=\left\{\right.$ ctbl unions and unplonents of sets from $\left.\bigcup_{B<\alpha} e_{\beta}\right\}$.
Proof. (a) By inchuction on n, if follows that arch $e_{n} \leq<C$, Thus, it remains to verify ht $\bigcup_{n \in \mathbb{N}} e_{n}$ is an algebra, which follows from the fact that if $A, B \in \bigcup_{n \in \mathbb{N}} C_{n}$, then In such the $A, B \in C_{n}$, so $A \cup B, A^{C}, B^{C} \in C_{n+1}$. Details left as HW.
(b) The proof is rinilar, using transfinite ikcluction and the tact that the supremumon of ably many til ordiacls is a cthlordied. Details left as optional HW.

Def. let X be a metric space (more generally, a topological space). The Bared o-alyebia is the σ-algebra generated by the open sets. It is denoted by $B(x)$ and the sets in it are called Bonel sets.

Def. A measurable space is a set equipped with a σ-algebra if its subsets, ie. a pair (x, y), where X is a set and $\zeta \subseteq P(x)$ is a σ-algebra.

Measures.
Def. For a algebra $A \leq P(X)$, a map $f: A \rightarrow[0, \infty]$ is said to be - finitely additive if $\mu\left(\bigcup_{n<k} A_{n}\right)=\sum_{n<k} \mu\left(A_{n}\right)$
for any pairwise disjoint $A_{1}, A_{2}, \ldots, A_{k} \in \theta$.

- countably allative if $\mu\left(\bigcup_{n \in \mathbb{N}} A_{n}\right)=\sum_{n \in \mathbb{N}}{ }_{v}\left(A_{n}\right)$ tor any pairwise disjoint $A_{1}, A_{2}, \ldots \in A$ with $\bigcup_{4 \in \mathbb{I}, ~} A_{n} \in A$. (Note What if A is a o-algebica then $\bigcup_{n \in \mathbb{N}} A_{n} \in A$ is automatic.)
Def. A measure on a measurable space (X, S) is a ctsly additive function $\Omega: \zeta \rightarrow[0, \infty]$ mapping \varnothing to 0 .
Caution. Thane is a herm tivitel\} ~ a d d i t i v e ~ m e a s u r e , ~ w h i c h ~ d o e s s ' f ~ w e e n ~ "measure with extra properties", bat cohere it is a finitely additive function on an algebra mapping \varnothing to 0.
A measure μ on (X, ρ) is called
- finite if $\mu(x)<\infty$.
- probability if $\mu(x)=1$.
- σ-finite if \exists partition $X=\bigcup_{n \in \mathbb{N}} X_{n}$ such that $\mu\left(X_{n}\right)<\infty \quad W_{n}$.

In practice, we mainly wossiler σ-finite measures.
Examples. (a) For a set X, the Dirac measure (or point measure) at $x_{0} \in X$ is the reassure $\delta_{x_{0}}: P(x) \rightarrow\{0,1\}$ defined by

$$
\delta_{x_{0}}(Y):=\left\{\begin{array}{ll}
1 & \text { if } Y_{\partial x_{0}}, \\
0 & \text { otherwise }
\end{array} \text { for } Y \in P(x)\right. \text {. }
$$

(b) For a set X, the counting measure on X is the measure $r: P(x) \rightarrow[0, \infty]$ defined by

$$
\mu(Y):=\left\{\begin{array}{l}
|Y| \text { if } Y \text { is finite, for } Y \in P(X) . \\
\infty \text { otherwise } .
\end{array}\right.
$$

(c) For an unctbl set X, let ζ be the σ-algebice of atbl and c_{0}-ctbl sets. Define $\mu: S \rightarrow\{0,1\}$ by

$$
\mu(Y):=\left\{\begin{array}{ll}
1 & \text { if } Y \text { is w-cthl } \\
0 & \text { if } Y \text { is acth }
\end{array}, \text { for } Y \in \zeta\right.
$$

This is a probability measure.
Obs. (a) A weighted ctbl sum of meashes is a measure. More precisely, if $r_{0}, r_{1}, \mu_{2} \ldots$ are measures on a σ-algebra $S \subseteq P(X)$ and $v_{0}, w_{1}, w_{2}, \ldots$ are nonareyctive scalars then $\sum_{n \in \mathbb{N}} w_{n} \mu_{n}$ is a measure on S.
(b) A convex wowbinction of probability vecswes is a probability measure. Mare precisely, if μ_{0}, μ_{1}, \ldots are pooh. weasines on a σ.all $S \subseteq P(X)$ and w_{0}, w_{1}, \ldots are non-negative scalars with $\sum_{n \in \mathbb{N}} w_{n}=1$, the $\sum_{n \in \mathbb{N}} w_{n} J_{n}$ is a prob. measure.

In particalar:
Examples (nontinned). (d) A weighted ram of Dirac meashases is a measire, i.e. fos $\left\{x_{n}\right\}_{n \in \mathbb{N}} \leq X$ and $\left\{w_{n}\right\}_{n \in \mathbb{N}} \leq[0, \infty)$,
$\sum_{n \in \mathbb{N}} w_{n} \delta_{x_{n}}$ is a measme.
Note tht if X is ctbl, then the connting neasire on X is just $\sum_{x \in X} \delta_{x}$.
Def. Let S be a $\sigma \cdot d y$ on a set X wontcising all singletons.
We say tht a measure μ on (X, ζ) is
o atomic if it has atons.
o purely atromic if $\mu=$ ctbl weighted sum of Dirac weasues.

- atomless or nonatomic (or continnons, bat his is octdated derminology) if it has no atoms.

In the examples akove (a), (b), and (d) are purely atomic, while (c) is atomen. In ordes to define more useful nonatomic mearneres, say on $2^{(N)}$ or \mathbb{R}^{d}, we need to first detine them on snall alyebras and then ertead to the gencratecl σ-algetras. We call a measme on an algebra a premeasnre, to eaphasize the tact that it is not clefine on a σ-algebra.

Bernoulli preneasines on 2IN. Let A denote the algebra of clopen subsets of $2^{\mathbb{N}}$. By $H W$,

$$
A=\{\text { timite unious of cylinders\} }=\{\text { frivite disjoint uniars af ulinders), }
$$

where the lust $=$ is because any tho cylinders are either disjoint os nested. Fir $p \in(0,1)$. We define the Bernoulli (p) premeasure $\mu_{p}: A \rightarrow[0,1]$ as follows:
(i) For a word $w \in \mathcal{Z}^{\angle \mathbb{N}}$, put $\tilde{\mu}_{p}([w]):=p^{n_{1}} \cdot(1-p)^{n_{0}}$, where $n_{0}:=$ \#. D_{s} in $w, \quad n_{1}:=\#$ of $1 s$ in w.
(ii) For $A \in A$, write A as a finite diygoict union $\bigcup_{n<k} C_{n}$ of cylinders, and pat

$$
\mu_{p}(A):=\sum_{n<k} \tilde{\mu}_{p}\left(C_{n}\right) .
$$

We first abed to show that μ_{p} is well-deficed, ie. doesn't depend on the chide of the partition $A=U{ }_{n<k} C_{n}$.
Ternindogy. The base of a cylinder $C \leq 2^{\mathbb{N}}$ is the anigae word $w \in 2^{\mathbb{N}}$ such not $C=[w]$.

Claim (a). For amy finite word $w \in 2^{<\mathbb{N}}$ a nl $l \geqslant 0$,

$$
\tilde{\zeta}_{p}([w])=\sum_{u \in q^{l}} \tilde{\mu}_{p}([w u]) .
$$

Proof. It is enough to prove for $l:=1$ and apply induction (on l). Bet for $l=1$, me have

$$
\sum_{u \in 2} \tilde{\mu}_{p}([w u])=\tilde{\mu}_{p}([w \theta])+\tilde{\jmath}_{p}([w \mid))=\tilde{\mu}_{p}([w]) \cdot(1-p)+\tilde{\mu}_{p}([w]) \cdot p=\tilde{\mu_{p}}([w])
$$

